Norbornanoid Chiral Ketones by Desymmetrization of Dibromoalkenes

by Ramazan Koçak ${ }^{\text {a }}$), Giuseppe Borsato ${ }^{\text {b }}$), Ottorino De Lucchi ${ }^{\text {b }}$), and Arif Daştan*a ${ }^{\text {a }}$)
${ }^{\text {a }}$) Ataturk University, Science Faculty, Department of Chemistry, TR-25240, Erzurum (phone: +90-442-2314405; fax: +90-442-2360948; email: adastan@atauni.edu.tr)
${ }^{\text {b }}$) Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Dorsoduro 2137, I-30123 Venezia

Abstract

New optically active polycyclic ketones $\mathbf{6 a - 6 d}$, amenable to a large variety of synthetic applications, have been prepared from readily available 2,3-dibromonorbornene and analogs (Scheme 2) via desymmetrization with $(-)$-ephedrine, followed by hydrolysis under mild acidic conditions. At variance with substrates $\mathbf{4 a}-\mathbf{4 d}$, the sterically hindered norbornene derivative $\mathbf{4 e}$ reacts with the solvent N -methylpyrrolidin-2-one (NMP) leading to the formation of the unusual cyclopropanoid products $\mathbf{8 a}$ and $\mathbf{8 b}$.

Introduction. - The use of polycyclic ketones as intermediates in asymmetric synthesis is one of the cornerstones of organic chemistry since the first synthesis of prostaglandins developed at the end of 1960s [1]. During the last four decades, several molecules have been prepared by procedures entailing this sort of molecules, and the natural products dolabellatrienone [2] and (-)-sordarin [3] are some of the most recent reported examples. The polycyclic ketones are known for their biological activities, for example, as inhibitors of γ-secretase [4], cannabinoid receptor ligands [5], and calcium channel blockers [6]. Our interest regarding the enantiomerically pure norbornenone types 1 (bicyclo[2.2.1]hept-5-en-2-one) is due to their role in the synthesis of benzocylotrimers [7] as outlined in Scheme 1. The transformation of the $\mathrm{C}=\mathrm{O}$ moiety to the reactive iodo derivatives $\mathbf{2}$ by known procedures [7h][8] is the preferred way to produce selectively and in high yield enantiomerically pure syn-benzocyclotrimer 3 .

Scheme 1. Enantiomerically Pure syn-Benzocyclotrimers $\mathbf{3}$ from Ketones $\mathbf{1}$

This type of compounds has recently been used as a platform to realize nanocapsules [7g], molecular cages [7a][7d], and receptors [7b], as well as a sumanene [9] and its derivatives [10].

Herein, we present a three-step synthesis of chiral norbornanoid ketones via a procedure that combines the versatility of high-temperature bromination [11] and the
desymmetrization of the formed 2,3-dibromonorbornenes with (-)-ephedrine [12]. Indeed, the high-temperature bromination allows an easy access to a variety of symmetrical dibromo olefins, which can be subjected to desymmetrization with (-)ephedrine to give diastereoisomeric oxazolidines $\mathbf{5}$, which are readily hydrolyzed to bromo ketones $\mathbf{6}$. The use of dibromo olefins $\mathbf{4}$, instead of the reported olefins bearing Cl or PhSO_{2} groups [13] allows for simple operations [14], an advantageous atom economy with respect to the PhSO_{2} groups [15], and, above all, a convenient access to a wide variety of norbornanoid substrates $\mathbf{4}$, rendering this method of general utility in the field [16].

Results and Discussions. - As depicted in Scheme 2, five polycyclic dibromo olefins were submitted to desymmetrization with $(-)$-ephedrine to evaluate the effect of the steric hindrance of the reagents on the yields and selectivity.

i) 1.5 equiv. of (- -ephedrine, 3.0 equiv. of ${ }^{t} \mathrm{BuOK}, \mathrm{NMP}, 16 \mathrm{~h}, 80^{\circ}$. ii) PPTS (Pyridinium p toluenesulfonate), $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 2 \mathrm{~d}$, r.t.

The results are collected in the Table. When substrate $\mathbf{4 a}$ (Entry 1) was reacted with (-)-ephedrine under the reaction conditions that had turned out to be the best with analogous substrates [12] (${ }^{(} \mathrm{BuOK}$ as base, 1-methylpyrrolidin-2-one (NMP) as solvent at 80°), two out of the possible four diastereoisomers, $\mathbf{5 a}$ and $\mathbf{5 a}^{\prime}$, in a $90: 10$ ratio were obtained. This ratio was determined by integration of the doublets at $c a . \delta(\mathrm{H}) 5$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum attributed to the H -atoms $\mathrm{H}_{\text {exo }}-\mathrm{C}(3)$ performed on the crude reaction mixture. The reaction is totally site-selective, i.e., it occurs at the same prochiral C -atom, giving rise to two diastereoisomers with the same skeletal configuration, rendering this approach straightforward, because the hydrolysis of the crude reaction mixture gave a single enantiomer of ketone $6 \mathbf{a}$ without any further resolution.

The configuration of $\mathbf{5 a}$ shown in Scheme 2 was determined by a thorough analysis of dipolar interactions in the NOESY spectra (available as Supporting Information).

Table. Desymmetrization of Dibromo Compounds $\mathbf{4}$

Entry	Substrate	Product ratio $\mathbf{5 / \mathbf { 5 } ^ { \prime } / \mathbf { 5 } ^ { \prime \prime }} \mathbf{}$ [\%]	Yield of $\mathbf{5}[\%]$	de of $\left.\mathbf{5}^{\mathrm{a}}\right)[\%]$	ee of $\mathbf{6}^{\mathrm{b}}$) [\%]
1	$\mathbf{4 a}$	$90: 10: 0$	82	>99	≥ 99
2	$\mathbf{4 b}$	$80: 7: 13$	73	74	74
3	$\mathbf{4 c}$	$80: 9: 11$	73	78	97
4	$\mathbf{4 d}$	$81: 9: 10$	74	80	≥ 99
5	$\mathbf{4 e}$	-	-	-	-

${ }^{\text {a }}$) Calculated on the basis of ${ }^{1} \mathrm{H}$-NMR spectra. ${ }^{\text {b }}$) Calculated on the basis of HPLC analysis.

This study was performed on a single crystal of $\mathbf{5 a}$ grown by slow evaporation of the solvent from the crude reaction mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $1: 3$. As already described in the literature for oxazolidines derived from dichloro olefins [8], also in the case of $\mathbf{5 a}$ only one of the two possible epimers with exo-orientation of $\mathrm{H}-\mathrm{C}(3)$ was detected. The formation of product $\mathbf{5 a}^{\prime}$ was observed after rearrangement of $\mathbf{5 a}$ in the acidic medium, which was slowly generated in solution of $\mathbf{5 a}$ in CDCl_{3}.

In the case of dibromo derivatives $\mathbf{4 b}$ (Entry 2, Table), the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the crude reaction mixture exhibited three doublets for the benzylic H -atoms of the oxazolidine ring at ca. 5 ppm . The ratio of the integrated signals was $80: 7: 13$. In the same way as for $\mathbf{5 a}$, these doublets were assigned to structures of $\mathbf{5 b}, \mathbf{5 b}$, and $\mathbf{5} \mathbf{b}^{\prime \prime}$. Also in this case, the re-equilibrium from $\mathbf{5 b}$ to $\mathbf{5 b} \mathbf{b}^{\prime}$ was detected by NMR analysis. Unfortunately, due to the poor crystallinity of the diasteroisomers $\mathbf{5 b}, \mathbf{5 b}$ ', and $\mathbf{5 b}$ ", all attempts to purify a sample by crystallization failed. Also, the use of standard chromatographic methods did not allow isolation of any pure sample of one diasteroisomer. The direct hydrolysis of the mixture of \mathbf{b}-type oxazolidines using pyridinium p-toluenesulfate (PPTS) as acid in THF/ $\mathrm{H}_{2} \mathrm{O}$, gave ketone $\mathbf{6 b}$ in high yield. The diastereoisomer ratio $\mathbf{5 b} / \mathbf{5} \mathbf{b}^{\prime} / \mathbf{5} \mathbf{b}^{\prime \prime}$, calculated by NMR integration of the crude mixture of products, provided an ee value of 74%, exactly matching, as described below, the value calculated by HPLC analysis.

The desymmetrization reaction of the exo-dibromo bicycle $\mathbf{4 c}$ also gave three diastereoisomers (Table, Entry 3), but, in this case, the major diastereoisomer 5c was successfully isolated by column chromatography in an almost pure state. The cleavage of the chiral auxiliary in $\mathbf{5 c}$ furnished $\mathbf{6 c}$ in 93% chemical yield and with 97% ee.

The tetrabromo compound $\mathbf{4 d}$ exhibited the same reactivity as $\mathbf{4 c}$ as indicated in the Table (Entry 4). In this case, the major diastereoisomer 5d was purified by crystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane $9: 1$). Hydrolysis gave ketone $\mathbf{6 d}$ as a single enantiomer in 88% chemical yield and $>99 \%$ ee. In this case, it is important to emphasize that the nucleophile reacted with only one of the two dibromo olefin sides present in the molecule. This reactivity is probably due to the steric hindrance induced by the oxozalidine ring of $\mathbf{5 d}$ that prevents the entry of the second nucleophile at the other reactive site of $\mathbf{4 d}$.

Finally, the desymmetrization reaction was tested on endo-4e, but no oxazolidine products could be detected. This unexpected result is probably due to the steric hindrance exerted by the benzene moiety which is not present in the other olefins thus far employed. When the reaction temperature was raised up to 120°, three products

7

8a

8b

Figure. Monobromo derivative 7, and cyclopropanoid compounds $\mathbf{8 a}$ and $\mathbf{8 b}$
were isolated: monobromide $\mathbf{7}$, and the cyclopropanoid compounds $\mathbf{8 a}$ and $\mathbf{8 b}$. These two molecules are the reaction of NMP at $\mathbf{4 e}$ (Fig.).

The relative configurations of the lactams $\mathbf{8 a}$ and $\mathbf{8 b}$ were determined by the chemical-shift variation of the atom $\mathrm{H}_{\text {syn }}$ and methano-C-atom. According to the γ gauche effect in NMR spectroscopy [17], the H-atoms subjected to Van der Waals interactions are shifted to lower fields, whereas the ipso-C-atoms are shifted to higher fields. This effect is highlighted in conformationally rigid systems like the bicyclic structures of the present work. As indicated in the Figure, the signal of the atom $\mathrm{H}_{\text {syn }}$ of $\mathbf{8 a}$ appears at $\delta(\mathrm{H}) 1.45$; however, at $\delta(\mathrm{H}) 3.45$ for $\mathbf{8 b}$. There is also a remarkable difference in the chemical shifts of the $\mathrm{CH}_{2} \mathrm{C}$-atoms of compounds $\mathbf{8 a}$ and $\mathbf{8 b}$, from $\delta(\mathrm{C}) 23$ to 35 ppm . In agreement with the observations mentioned above, we assigned the relative configurations of the lactams $\mathbf{8 a}$ and $\mathbf{8 b}$ as depicted in the Figure.

To determine the enantiomeric purity of the ketones $\mathbf{6 a}-\mathbf{6 d}$ by HPLC, a sample of the racemate as reference standard was prepared using achiral alcohols in place of (-)ephedrine. As shown in Scheme 3, ethylene glycol was used for 4a, while MeOH was used for all other samples $\mathbf{4 b}-\mathbf{4 d}$, and, therefore, four acetals, $(\pm)-\mathbf{9 a}-(\pm)-9 \mathbf{d}$, and ketones, $(\pm)-\mathbf{6 a}-(\pm)-\mathbf{6 d}$, were synthesized. The analysis was carried out by employing a Chiralcel $A S-H^{\circledR}$ column and hexane $/ \mathrm{PrOH} 95: 5$ as mobile phase. The results are compiled in the Table.

The absolute configurations of $\mathbf{6 a}$ and $\mathbf{6 b}$ were determined by comparison of the optical rotations with those of the known compounds 10 a and 10b [18][19], after removal the Br -atom using $\mathrm{Zn} / \mathrm{AcOH}$ as reductant as shown in Scheme 4.

In the case of 10a, the optical rotation found was $[\alpha]_{D}^{25}=+581$ ([18]: for (-)stereoisomer $\left.[\alpha]_{\mathrm{D}}^{25}=-578\right)$, while 10b had a $[\alpha]_{\mathrm{D}}^{25}$ value of $+27\left([19]:[\alpha]_{\mathrm{D}}^{25}=+34\right)$ [19]. These data established that the desymmetrization process proceeded as in the cases of the dichloro [8] and bis(phenylsulfonyl) norbornadienes [9] affording, with natural $(-)$-ephedrine, ketones with (R)-configuration at $\mathrm{C}(1)$.

Conclusions. - In this work, four new norbornanoid oxazolidines, 5a-5d, and the related α-bromoketones, $\mathbf{6 a}-\mathbf{6 d}$, were obtained through a three-steps synthesis in good yield, diastereoselectivity, and excellent enatioselectivity. Enantiomer purities of $\mathbf{6 a}-$ $\mathbf{6 d}$ were determined by HPLC analysis, and the absolute configurations of $\mathbf{6 a}$ and $\mathbf{6 b}$ were established.

Scheme 3

$Y=$

i) 2.2 equiv. of alcohols, 2.2 equiv. of ${ }^{t} \mathrm{BuOK}, \mathrm{NMP}, 16 \mathrm{~h}, 80^{\circ}$. ii) $1 \mathrm{~m} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, THF, 2 d .

Scheme 4
6a $\xrightarrow[20 \mathrm{~h}, 70^{\circ}]{\mathrm{Zn}, \mathrm{AcOH}}$

(+)-10a

(+)-10b

The authors are indebted to the Scientific and Technical Research Council of Turkey (TUBITAK Project No. TBAG-110T091) for financial support. This work also has been supported by Atatürk University (BAP 2011/383) and Ca Foscari University. We would also like to thank Dr. Murat Güney, Prof. Hamdullah Kılıç, and Res. Assist. Saffet Çelik for their technical assistance.

Experimental Part

General. TLC: Al-Backed silica-gel $60 F_{254}$ plates $\left(\mathrm{SiO}_{2}\right.$; Merck). Prep. TLC: $\mathrm{SiO}_{2} 60 H F_{254+366}$ (Merck). Column chromatography (CC): $\mathrm{SiO}_{2} 60$ (Merck); with hexane (b.p. $40-60^{\circ}$)/AcOEt. Enantiomeric excess (ee) was determined directly from the areas under the curve. Optical rotations: $589-\mathrm{nm}$ spectropolarimeter at 25°. Polarimetric ee values were determined using HPLC analysis on a Thermo Spectra Analysis HPLC System equipped with a UV detector using a chiral column (Chiralcel $A S-H)$; hexane $/ \mathrm{PrOH} 95: 5$ as the eluent, a flow rate of $1.0 \mathrm{ml} / \mathrm{min}$; the detection performed at a wavelength of 220 nm . IR Spectra: Matson 1000 FT-IR spectrometer with KBr pellets; \tilde{v} in cm^{-1}. NMR Spectra: Varian or Bruker $400-\mathrm{MHz}$ spectrometer in CDCl_{3} unless stated otherwise; δ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard; J in Hz. MS: Varian 300 MS (TQ mass spectrometer); in m / z (rel. \%). Elemental analyses: LECO CHNS-932 elemental analyzer.

General Procedure for the Reaction of 2,3-Dibromonorbornenes 4 with Nucleophiles. Amino alcoholate, or alcoholate, or diolate (1.5 equiv.), prepared in situ by reaction with base (3 equiv.) , in dry NMP (N-methylpyrrolidin-2-one; 10 ml), was added to a soln. of 1.0 equiv. of dihalo olefin ($\mathbf{4 a}-\mathbf{4 d}$;
1.0 mmol) in dry NMP (5 ml). After 16 h at 80° (for $\mathbf{4 e} 120^{\circ}$ for 4 d) under Ar, the cooled mixture was treated with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and extracted with pentane $(3 \times 20 \mathrm{ml})$; the combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed. Products $\mathbf{5 a}$ and $\mathbf{5 d}$ were purified by crystallization. Products $\mathbf{5 b}$, $\mathbf{5 b}$, and $\mathbf{5 b}$ " were used for the following reaction without purification. Product $\mathbf{5 c}$ was purified by CC (hexane/AcOEt $95: 5$). Products 7, 8a, and 8b were isolated by CC (hexane/AcOEt 96:4). Acetals (\pm)$\mathbf{9 a},(\pm)-9 \mathbf{c}$, and $(\pm)-\mathbf{9 d}$ were purified by crystallization, whereas (\pm) - $\mathbf{9 b}$ was purified by CC (hexane/ AcOEt 95 :5).
(1R,2S,3R,4S,4'S, 5'R)-3-Bromo-3,4-dihydro-3',4'-dimethyl-5'-phenyl-1H-spiro[1,4-methanonaphtha-lene-2,2'-[1,3]oxazolidine] (5a). Yield: $315 \mathrm{mg}(82 \%)$. Colorless crystals (from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1$). M.p. $137-138^{\circ} .[\alpha]_{\mathrm{D}}=+14\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR: 3746, 3024, 2978, 2932, 2798, 2874, 1471, 1459, 1291, $1260,1057,1043,770,750,704 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.35-7.08(\mathrm{~m}, 9 \mathrm{H}) ; 5.00(d, J=8.2,1 \mathrm{H}) ; 4.75(d, J=4.2,1 \mathrm{H})$; $3.55-3.53(m, 2 H) ; 3.29(d q, J=8.2,6.5,1 \mathrm{H}) ; 2.56(s, 3 \mathrm{H}) ; 2.21-2.20(m, 2 \mathrm{H}) ; 0.68(d, J=6.5,3 \mathrm{H})$. ${ }^{13}$ C-NMR: 145.4; 144.4; 139.1; 128.0; 127.5; 127.3; 126.6; 125.5; 123.7; 122.6; 99.3; 80.3; 61.4; 56.4; 50.5; 46.3; 46.2; 34.4; 15.7. EI-MS: 385/383 (10, $\left.M^{+}\right), 304\left(87,[M-\mathrm{Br}]^{+}\right), 281(14), 207(23), 157(34), 128$ (100), 118 (47), 91 (32), 77 (11), 63 (6). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}$: C 65.63, H 5.77, N 3.64; found: C 65.69, H 5.77, N 3.60.
(1S, $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R}, 4^{\prime} \mathrm{S}, 5^{\prime} \mathrm{R}$)-3-Bromo-3',4'-dimethyl-5'-phenylspiro[bicyclo[2.2.1]heptane-2, 2'-[1,3]oxazolidine] (5b). Yield: $248 \mathrm{mg}(73 \%)$. Pale-yellow wax. $[\alpha]_{\mathrm{D}}=-67.5\left(c=0.4, \mathrm{CHCl}_{3}\right)$. IR: 3087, 3063, 3028, 2964, 2931, 2873, 2997, 1456, 1368, 1329, 1305, 1234, 1216, 1199, 1064, 1016, 758, 742, 721, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.48-7.26(m, 5 \mathrm{H}) ; 4.96(d, J=8.5,1 \mathrm{H}) ; 4.46(d d, J=4.1,2.1,1 \mathrm{H}) ; 3.06(d q, J=8.5,6.5,1 \mathrm{H})$; $2.50-2.47(m, 2 \mathrm{H}) ; 2.40(s, 3 \mathrm{H}) ; 1.91-1.89(m, 1 \mathrm{H}) ; 1.71($ br. $d, J=10.8, A$ part of $A B$ system, 1 H$)$; 1.55 (br. $d, J=10.8, B$ part of $A B$ system, 1 H$) ; 1.51-1.29(m, 3 \mathrm{H}) ; 0.60(d, J=6.5,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: 139.6; 128.3; 128.0; 127.8; 97.7; 81.0; 61.3; 60.5; 43.5; 38.0; 36.6; 34.2; 24.3; 22.6; 16.1. GC/MS-MS (CI, $150 \mathrm{eV}): 338 / 336\left(25,[M+\mathrm{H}]^{+}\right), 256\left(75,[M-\mathrm{Br}]^{+}\right), 176(9), 148(100), 118(20), 81(12), 58(32)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}: \mathrm{C} 60.72$, H 6.59, N 4.17; found: C 61.71, H 6.57, N 4.50.
($1^{\prime} \mathrm{S}, 2 \mathrm{~S}, 2^{\prime} \mathrm{S}, 4 \mathrm{~S}, 5 \mathrm{R}, 9^{\prime} \mathrm{R}, 10^{\prime} \mathrm{R}, 12^{\prime} \mathrm{R}$)-12'-Bromo-3,4-dimethyl-5-phenylspiro[1,3-oxazolidine-2,11'-tetracyclo[8.2.1.0 ${ }^{2,9} .0^{3,8}$]trideca[3,5,7]triene] (5c). Yield: 298 mg (73\%). Pale-yellow liquid. $[\alpha]_{\mathrm{D}}=-78.21$ $\left(c=3.35, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: 3033,3063,2965,2872,2854,2798,1495,1455,1294,1271,1072,1045,750,701$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.49-6.89(m, 9 \mathrm{H}) ; 5.09(d, J=8.5,1 \mathrm{H}) ; 4.59(d, J=4.0,1 \mathrm{H}) ; 3.93(d, J=3.7,1 \mathrm{H}) ; 3.84(d$, $J=3.7,1 \mathrm{H}) ; 3.15(d q, J=8.5,6.5,1 \mathrm{H}) ; 2.60-2.57(m, 2 \mathrm{H}) ; 2.41(s, 3 \mathrm{H}) ; 1.46(\mathrm{br} . d, J=11.8, A$ of $A B$, $1 \mathrm{H}) ; 1.13(d t, J=11.8,1.7, B$ of $A B, 1 \mathrm{H}) ; 0.66(d, J=6.5,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 145.3 ; 144.8 ; 139.3 ; 128.1$; $127.9 ; 127.7(3 \times) ; 122.4 ; 122.2 ; 97.8 ; 80.9 ; 61.2 ; 58.3 ; 44.8 ; 44.4 ; 43.8 ; 38.0 ; 34.1 ; 30.3 ; 15.9$. GC/MS-MS $(\mathrm{CI}, 150 \mathrm{eV}): 412 / 410\left(28,[M+\mathrm{H}]^{+}\right), 330\left(98,[M-\mathrm{Br}]^{+}\right), 267(8), 202(16), 148(100), 107(28), 58(40)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrNO}$: C 67.32, H 5.90, N 3.41; found: C 67.55, H 5.92, N 3.42.
(1S, $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R}, 4^{\prime} \mathrm{S}, 5^{\prime} \mathrm{R}$)-3,5,6-Tribromo-3', 4'-dimethyl-5'-phenylspiro[bicyclo[2.2.1]hept-5-ene-2, 2'[1,3]oxazolidine] (5d). Yield: $363 \mathrm{mg}\left(74 \%\right.$). Colorless crystals (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $9: 1$). M.p. $151-153^{\circ}$. $[\alpha]_{\mathrm{D}}=+2.0\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: 3128, 3027, 2963, 1404, 1260, 1104, 800, 615. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.47-7.45(\mathrm{~m}$, $2 \mathrm{H}) ; 7.32-7.22(\mathrm{~m}, 3 \mathrm{H}) ; 5.11(d, J=8.3,1 \mathrm{H}) ; 4.56(d, J=3.2,1 \mathrm{H}) ; 3.29-3.20(m, 3 \mathrm{H}) ; 2.42(s, 3 \mathrm{H})$; $2.33(d t, J=10.0,1.7, A$ of $A B, 1 \mathrm{H}) 1.91(d t, J=10.0,1.5, B$ of $A B, 1 \mathrm{H}) ; 0.69(d, J=6.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: $139.1 ; 128.3 ; 128.2 ; 128.0 ; 127.9 ; 125.2 ; 100.8 ; 81.6 ; 61.5 ; 56.31 ; 53.6 ; 53.1 ; 46.1 ; 34.3 ; 15.8$. EI-MS: 493/491/ 489/495 (100, $\left.[M+\mathrm{H}]^{+}\right), 416 / 414 / 412\left(8,[M-\mathrm{Br}]^{+}\right), 148(72)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{3} \mathrm{NO}: \mathrm{C} 41.50, \mathrm{H}$ 3.69, N 2.85 ; found: C 41.15, H 3.66, N 2.81.
rac-($1^{\prime} R, 3^{\prime} R, 4^{\prime} S$)-3'-Bromo-3', 4^{\prime}-dihydro- $1^{\prime} \mathrm{H}$-spiro[1,3-dioxolane-2, 2^{\prime}-[1,4]methanonaphthalene] (9a). Yield: $240 \mathrm{mg}\left(85 \%\right.$). Colorless crystals (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $9: 1$). M.p. 105-107 ${ }^{\circ}$. IR: 2967, 2882, 1463, 1402, 1291, 1262, 1197, 1163, 1098, 1035, 1003, 800, 765. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.28-7.17(m, 4 \mathrm{H}) ; 4.44-4.43$ $(m, 1 \mathrm{H}) ; 4.06-4.00(m, 1 \mathrm{H}) ; 3.96-3.90(m, 3 \mathrm{H}) ; 3.50-3.47(m, 1 \mathrm{H}) ; 3.19-3.17(m, 1 \mathrm{H}) ; 2.25-2.23$ ($m, 2$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 144.3 ; 142.9 ; 127.1 ; 126.5 ; 124.2 ; 123.5 ; 133.0 ; 66.2 ; 64.9 ; 59.7 ; 52.4 ; 50.3 ; 47.0 . \mathrm{GC} /$ MS-MS (CI, 150 eV): 283/281 (13, $[M+\mathrm{H}]^{+}$), 240/239 (65), 202/201 (85, $\left.[M-\mathrm{Br}]^{+}\right), 157(51), 129(63)$, 116 (38), 73 (100), 51 (15). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{2}$: C 55.54, H 4.66; found: C 55.62, H 4.52.
rac-(1R,3S,4S)-3-Bromo-2,2-dimethoxybicyclo[2.2.1]heptane (9b). Yield: 202 mg (86%). Paleyellow wax. IR: 2961, 2876, 2833, 1454, 1331, 1198, 1171, 1132, 1090, 1058, 1031, 968, 763. ${ }^{1} \mathrm{H}$-NMR: $4.16(d, J=3.9,1 \mathrm{H}) ; 3.25(s, 3 \mathrm{H}) ; 3.20(s, 3 \mathrm{H}) ; 2.48-2.45(m, 1 \mathrm{H}) ; 2.36-2.34(m, 1 \mathrm{H}) ; 1.90-1.81(m$, $1 \mathrm{H}) ; 1.75$ (br. $d, J=10.4, A$ of $A B, 1 \mathrm{H}) ; 1.55$ (br. $d, J=10.4, B$ of $A B, 1 \mathrm{H}) ; 1.44-1.27(m, 3 \mathrm{H})$.
${ }^{13}$ C-NMR: 104.3; 58.7; 51.0; 47.8; 43.6; 43.3; 35.0; 23.2; 21.8. GC/MS-MS (CI, 150 eV): 205/203 (23, [$M-$ $\left.\mathrm{MeO}]^{+}\right), 125\left(100,[M-\mathrm{Br}-\mathrm{MeO}]^{+}\right), 93\left(52,[M-\mathrm{Br}-2 \mathrm{MeO}]^{+}\right), 67(6)$. Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BrO}_{2}: \mathrm{C}$ 45.98, H 6.43; found: C 45.63, H 6.79 .
rac-(1R,2R,9S,10S,12S)-12-Bromo-11,11-dimethoxytetracyclo[8.2.1.0 $0^{2,9} .0^{3,8}$]trideca-3,5,7-triene (9c). Yield: $266 \mathrm{mg}(86 \%)$. Colorless crystals (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $9: 1$). M.p. $82-84^{\circ}$. IR: 2963, 2833, 1455, 1261, 1160, 1123, 1050, 801, 759, 615. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.25-7.20(m, 2 \mathrm{H}) ; 7.05-6.99(m, 2 \mathrm{H}) ; 4.30(d, J=4.4$, $1 \mathrm{H}) ; 3.87(d, J=3.3,1 \mathrm{H}) ; 3.47(d, J=3.3,1 \mathrm{H}) ; 3.39(s, 3 \mathrm{H}) ; 3.26(s, 3 \mathrm{H}) ; 2.60-2.58(m, 1 \mathrm{H}) ; 2.47-$ $2.45(m, 1 \mathrm{H}) ; 1.53$ (br. $d, J=11.3, A$ of $A B, 1 \mathrm{H}) ; 1.10$ (br. $d, J=11.3, B$ of $A B, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 145.6$; 144.3; $128.0 ; 128.0 ; 122.6 ; 122.4 ; 104.5 ; 57.6 ; 51.5 ; 48.5 ; 45.2 ; 43.8 ; 43.8 ; 42.9 ; 29.5$. EI-MS: $310 / 308$ (3, $\left.M^{+}\right), 277 / 275\left(3,[M-\mathrm{MeO}]^{+}\right), 229\left(100,[M-\mathrm{Br}]^{+}\right), 165\left(29,[M-\mathrm{Br}-2 \mathrm{MeO}]^{+}\right), 153(35,[M-\mathrm{Br}-$ $\left.2 \mathrm{MeO}-\mathrm{CH}_{2}\right]^{+}$), 141 (48), 101 (54), 76 (11). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{2}$: C 58.27, H 5.54; found: C 57.88, H 5.60.
rac-(1R,4S,6R)-2,3,6-Tribromo-5,5-dimethoxybicyclo[2.2.1]hept-2-ene (9d). Yield: 313 mg (80%). Colorless crystals (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $9: 1$). M.p. $88-90^{\circ}$. IR: 2944, 2850, 1594, 1451, 1170, 1144, 1118, 1068, 1048, 873. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.34(d, J=3.5,1 \mathrm{H}) ; 3.42(s, 3 \mathrm{H}) ; 3.31(s, 3 \mathrm{H}) ; 3.26-3.23(m, 1 \mathrm{H}) ; 3.16-$ $3.15(m, 1 \mathrm{H}) ; 2.31(d t, J=9.5,2.0, A$ of $A B, 1 \mathrm{H}) ; 1.95(d t, J=9.5,1.6, B$ of $A B, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 127.2$; 124.5; 106.5; 56.9; 56.3; 53.3; 52.4; 50.1; 46.6. GC/MS-MS (CI, 150 eV): 394/393/390/388 (3, M^{+}), 361 (83 , $\left.[M-\mathrm{MeO}]^{+}\right), 313 / 311 / 309\left(16,[M-\mathrm{Br}]^{+}\right), 279\left(11,[M-\mathrm{Br}-\mathrm{MeO}]^{+}\right), 233 / 231\left(33,[M-2 \mathrm{Br}]^{+}\right), 201$ $\left(7,[M-2 \mathrm{Br}-\mathrm{MeO}]^{+}\right), 168 / 166\left(100,[M-2 \mathrm{Br}-2 \mathrm{MeO}]^{+}\right), 87 / 85\left(19,[M-3 \mathrm{Br}-2 \mathrm{MeO}]^{+}\right), 75(33$, $\left[M-3 \mathrm{Br}-2 \mathrm{MeO}-\mathrm{CH}_{2}\right]^{+}$), 75 (35). Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{O}_{2}$: C 27.65, H 2.84; found: C 28.03, H 3.14.
rac-(1R,2R,9R,10S)-11-Bromotetracyclo[8.2.1.0 $0^{2,9} .0^{3,8}$]trideca-3,5,7,11-tetraene (7; first fraction) [11c]. Yield: $101 \mathrm{mg}(41 \%)$. Colorless crystals (from hexane). M.p. 51°. IR: 3063, 2986, 2940, 2870, 1587, 1452, 1317, 1279, 1247, 1138, 1003, 933, 817, 759. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.19-6.94(m, 4 \mathrm{H}) ; 5.73(d, J=3.1,1 \mathrm{H})$; $3.91(t, J=4.7,1 \mathrm{H}) ; 3.74(t, J=4.7,1 \mathrm{H}) ; 3.10($ br. $d, J=4.7,1 \mathrm{H}) ; 3.01-3.00(m, 1 \mathrm{H}) ; 2.22($ br. $d, J=8.5$, A of $A B, 1 \mathrm{H}), 1.70($ br. $d, J=8.5, B$ of $A B, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 147.0 ; 146.4 ; 132.3 ; 127.0 ; 126.6 ; 123.7 ; 122.4$; 122.3; 54.3; 52.0; 47.0; 45.8; 44.7.
rac-(1R,2R,9S,10S,11S,13R)-1'-Methyl-2'H-spiro[pentacyclo[8.3.1.0 $0^{2,9} \cdot 0^{3,8} \cdot 0^{11,13}$]tetradeca-3,5,7-tri-ene-12, 3^{\prime}-pyrrolidin]-2'-one ($\mathbf{8 a}$; second fraction). Yield: 93 mg (35%). Colorless crystals (from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$). M.p. $92-93^{\circ}$. IR: 3035, 3003, 2949, 2890, 1677, 1453, 1397, 1089, 733. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.14-6.99$ $\left(A A^{\prime} B B^{\prime}, 4 \mathrm{H}\right) ; 3.62(\mathrm{br} . d, J=4.5,2 \mathrm{H}) ; 3.46(d t, J=10.7,1.6, A$ of $A B, 1 \mathrm{H}) ; 3.16(t, J=6.7,2 \mathrm{H}) ; 2.82(s$, $3 \mathrm{H}) ; 2.74-2.73(m, 2 \mathrm{H}) ; 1.51(t, J=6.7,2 \mathrm{H}) ; 1.15$ (br. $d, J=10.7, B$ of $A B, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 176.0$; 146.6; 126.9; 123.3; 50.2; 46.8; 36.8; 36.2; 29.9; 26.4; 26.3; 23.2. EI-MS: 265/264 (25, M ${ }^{+}$), 178 (45), 165 (50), $154(45), 141(100), 136(80), 128(63), 115(53)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C} 81.47$, H 7.22, N 5.28 , found: C 81.38, H 7.20, N 5.41.
rac-(1R,2R,9S,10S,11S,13R)-1'-Methyl-2'H-spiro[pentacyclo[8.3.1. $\left.0^{2,9} \cdot 0^{3,8} \cdot 0^{11,13}\right]$ tetradeca-3,5,7-tri-ene-12, 3^{\prime}-pyrrolidin]-2'-one ($\mathbf{8 b}$; third fraction). Yield: $45 \mathrm{mg}(17 \%)$. Colorless liquid. IR: 3061, 3029, 2955, 2786, 1688, 1683, 1504, 1471, 1454, 1435, 1402, 1318, 1302, 1293, 1247, 1138, 1094, 759, 732, 711. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.16-7.00\left(A A^{\prime} B B^{\prime}, 4 \mathrm{H}\right) ; 3.65-3.62(m, 2 \mathrm{H}) ; 3.35-3.32(m, 2 \mathrm{H}) ; 2.72(s, 3 \mathrm{H}) ; 2.59-2.57$ ($m, 2 \mathrm{H}$) ; 2.18-2.15 ($m, 2 \mathrm{H}$); 1.45 (br. $d, J=11.0, A$ of $A B, 1 \mathrm{H}$); 1.18 (br. $d, J=11.0, B$ of $A B, 1 \mathrm{H}$); $0.89-0.87$ ($m, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.3 ; 147.8 ; 126.4 ; 123.2 ; 51.0 ; 46.0 ; 38.2 ; 35.9 ; 35.0 ; 32.6 ; 30.7 ; 29.3$. EIMS: $265 / 264\left(30, M^{+}\right), 178(50), 165(58), 154(40), 141(100), 136(75), 128(87), 102(62), 77(45)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$: C 81.47, H 7.22, N 5.28; found: C 81.25, H 7.38, N 5.28.

General Procedure for the Synthesis of Racemic Ketones 6a-6d. A soln. of $\mathbf{5}(0.76 \mathrm{mmol})$ and PPTS (pyridinium p-toluenesulfonate; $190 \mathrm{mg}, 0.76 \mathrm{mmol})$ in THF $(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was stirred at r.t. for 2 d and then diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and extracted with pentane $(3 \times 20 \mathrm{ml})$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The crude reaction product was purified by crystallization or CC. The same procedure was performed for hydrolyses of acetals 9 using 1 M HCl instead of PPTS.
(1R,3R,4S)-3-Bromo-3,4-dihydro-1,4-methanonaphthalen-2(1H)-one (6a). Yield: 180 mg (100\%). Colorless crystals (from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$). M.p. $59-60^{\circ} \cdot[\alpha]_{\mathrm{D}}=+311.5\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: 3071, 3044, 2947, 2873, 1797, 1752, 1460, 1308, 1273, 1121, 987, 808. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.40-7.17(\mathrm{~m}, 4 \mathrm{H}) ; 4.51(d, J=4.5$, $1 \mathrm{H}) ; 3.80-3.78(m, 1 \mathrm{H}) ; 3.75-3.73(m, 1 \mathrm{H}) ; 2.76(d d d, J=10.4,2.4,1.4, A$ of $A B, 1 \mathrm{H}) ; 2.43(d t, J=$ 10.4, 1.4, B of $A B, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 205.9 ; 144.9 ; 138.7 ; 127.8 ; 127.4 ; 124.6 ; 123.3 ; 48.6 ; 48.2 ; 47.8 ; 43.5$.

GC/MS-MS (CI, 150 eV$): 239 / 237\left(23,[M+\mathrm{H}]^{+}\right), 157\left(83,[M-\mathrm{Br}]^{+}\right), 129(100), 115(10), 64$ (5). Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}: \mathrm{C} 55.72$, H 3.83; found: C 55.52, H 4.22.
(1S,3R,4R)-3-Bromobicyclo[2.2.1]heptan-2-one ($\mathbf{6 b}$). Yield: 144 mg (100%). Pale-yellow wax. $[\alpha]_{\mathrm{D}}=-46.96\left(c=0.58, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: 2969,2879,1755,1450,1402,1294,1157,1076,941,781$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.33(d, J=4.3,1 \mathrm{H}) ; 2.85-2.82(m, 1 \mathrm{H}) ; 2.75(d, J=4.9,1 \mathrm{H}) ; 2.10-2.02(m, 1 \mathrm{H}) ; 1.92-$ $1.82(m, 3 \mathrm{H}) ; 1.78-1.70(m, 1 \mathrm{H}) ; 1.59-1.52(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 210.2 ; 55.1 ; 48.2 ; 42.2 ; 35.3 ; 25.0$; 22.7. GC/MS-MS (CI, 150 eV$): 191 / 189\left(12,[M+\mathrm{H}]^{+}\right), 109\left(20,[M-\mathrm{Br}]^{+}\right), 81\left(100,[M-\mathrm{Br}-\mathrm{CO}]^{+}\right)$, 67 (8). Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BrO}$: C 44.47, H 4.80; found: C 44.83, H 5.16.
(1S,2S,9R,10R,12R)-12-Bromotetracyclo[8.2.1.0 $0^{2,9} .0^{3,8}$]trideca-3,5,7-trien-11-one ($\mathbf{6 c}$). Yield: 200 mg (100%). Colorless crystals (from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$). M.p. $88-89^{\circ} .[\alpha]_{\mathrm{D}}=+236.36\left(c=0.11, \mathrm{CHCl}_{3}\right)$. IR: 2958, 1760, 1456, 1280, 1143, 731. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 7.30-7.26(m, 2 \mathrm{H}) ; 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}) ; 4.43(d, J=4.5$, $1 \mathrm{H}) ; 4.08(d, J=3.6,1 \mathrm{H}) ; 3.53(d, J=3.6,1 \mathrm{H}) ; 2.94-2.93(m, 1 \mathrm{H}) ; 2.87(s, 1 \mathrm{H}) ; 1.68(\mathrm{br} . d, J=11.8, A$ of $A B, 1 \mathrm{H}) ; 1.49$ (br. $d, J=11.8, B$ of $A B, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 207.9 ; 144.6 ; 141.0 ; 128.7 ; 128.6 ; 122.9 ; 122.3$; 53.1; 49.1; 45.0; 44.0; 41.8; 29.8. GC/MS-MS (CI, 150 eV): 265/263 (15, $\left.[M+\mathrm{H}]^{+}\right), 183\left(92,[M-\mathrm{Br}]^{+}\right)$, 165 (12), $155\left(100,[M-\mathrm{Br}-\mathrm{CO}]^{+}\right), 142(28), 115(10), 55(25)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}: \mathrm{C} 59.34, \mathrm{H}$ 4.21; found: C 59.49, H 4.30 .
(1S,3R,4R)-3,5,6-Tribromobicyclo[2.2.1]hept-5-en-2-one (6d). Yield: 262 mg (100%). Colorless crystals (from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $9: 1$). M.p. $142-143^{\circ} .[\alpha]_{\mathrm{D}}=+201.0\left(c=0.15, \mathrm{CHCl}_{3}\right)$. IR: 2963, 2927, $2855,1767,1739,1582,1449,1412,1261,1026,864,802 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.31(d, J=3.4,1 \mathrm{H}) ; 3.54-3.52(m$, $1 \mathrm{H}) ; 3.35-3.34(\mathrm{~m}, 1 \mathrm{H}) ; 2.89(d d d, J=10.3,2.5,1.6, A$ of $A B, 1 \mathrm{H}) ; 2.22(d t, J=10.3,1.6, B$ of $A B, 1 \mathrm{H})$. ${ }^{13}$ C-NMR: 202.8; 131.5; 121.4; 61.7; 53.9; 47.7; 44.1. EI-MS: 348/346/344/342 (29, $\left.M^{+}\right), 265(13,[M-$ $\mathrm{Br}]^{+}$), 239/237/235 (40, $[M-\mathrm{Br}-\mathrm{CO}]^{+}$), 226/224 (100), $207(36), 158 / 156\left(64,[M-2 \mathrm{Br}-\mathrm{CO}]^{+}\right)$, $145 / 143\left(45,\left[M-2 \mathrm{Br}-\mathrm{CO}-\mathrm{CH}_{2}\right]^{+}\right), 77\left(30,[M-3 \mathrm{Br}-\mathrm{CO}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}: \mathrm{C} 24.38, \mathrm{H}$ 1.46; found: C 24.29 , H 1.46.

General Procedure for the Reduction of Bromo Ketones $\mathbf{6 a}$ and $\mathbf{6 b}$. To a vigorously stirred suspension of Zn dust $(2.0 \mathrm{~g}, 0.03 \mathrm{~mol})$ in 5 ml of glacial AcOH , a soln. of bromo ketone (0.42 mmol) in 2 ml of glacial AcOH was added dropwise. After addition was complete, the temp. was raised to and maintained at 70° for 20 h . The soln. was then cooled and filtered through Celite. The solvent was evaporated in vacuo, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added to the residue, and org. layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$ and dried on CaCl_{2}.
(1R,4R)-3,4-Dihydro-1,4-methanonaphthalen-2(1H)-one (10a). Yield: $50 \mathrm{mg}(74 \%)$. Colorless wax. $[\alpha]_{\mathrm{D}}=+581\left(c=0.76, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.28-7.09(m, 4 \mathrm{H}) ; 3.67-3.64(m, 1 \mathrm{H}) ; 3.57-3.56(m, 1 \mathrm{H})$; $2.46(d d t, J=9.6,4.6,1.7, A$ of $A B, 1 \mathrm{H}) ; 2.30(d d, J=17.0,3.9, A$ of $A B, 1 \mathrm{H}) ; 2.26(d t, J=9.6,1.3, B$ of $A B, 1 \mathrm{H}) ; 1.96(d d, J=17.0,4.5, B$ of $A B, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 213.6 ; 148.8 ; 140.0 ; 127.6 ; 126.9 ; 123.8 ; 121.7$; 58.2; 51.0; 41.9; 40.5.
(1S,4R)-Bicyclo[2.2.1]heptan-2-one (10b). Yield: $36 \mathrm{mg}(78 \%)$. Yellowish wax. $[\alpha]_{\mathrm{D}}=+36.59(c=$ $0.41, \mathrm{CHCl}_{3} ; 74 \%$ ee $) .{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.68-2.65(m, 1 \mathrm{H}) ; 2.61-2.58(m, 1 \mathrm{H}) ; 2.06($ br. $d, J=15.6,1 \mathrm{H})$; $1.86-1.72(m, 4 \mathrm{H}) ; 1.57-1.39(m, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 218.3 ; 49.9 ; 45.3 ; 37.7 ; 35.3 ; 27.2 ; 24.2$.

REFERENCES

[1] E. J. Corey, T. K. Schaaf, W. Huber, U. Koelliker, N. M. Weinshenker, J. Am. Chem. Soc. 1970, 92, 397; E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 5675.
[2] H. Miyaoka, Y. Isaji, H. Mitome, Y. Yamada, Tetrahedron 2003, 59, 61.
[3] S. Chiba, M. Kitamura, K. Narasaka, J. Am. Chem. Soc. 2006, 128, 6931.
[4] P. C. Belanger, I. J. Collins, J. C. Hannam, T. Harrison, S. J. Lewis, A. Madin, E. G. Mc Iver, A. J. Nadin, J. G. Neduvelil, M. S. Shearman, A. L. Smith, T. J. Sparey, G. I. Stevenson, M. R. Teall, WO 01/70677A1, 2001.
[5] M. Muthuppalaniappan, G. Balasubramanian, S. Gullapalli, N. K. Joshi, S. Narayanan, US 2008 0234259A1, 2008.
[6] K. Hilpert, F. Hubler, D. Renneberg, WO2010/46855, 2010; L. Liu, N. Ishida, M. Murakami, Angew. Chem., Int. Ed. 2012, 51, 2485.
[7] a) S. Tartaggia, O. De Lucchi, A. Gambaro, R. Zangrando, F. Fabris, A. Scarso, Chem. - Eur. J. 2013, 19, 5701; b) F. Fabris, O. De Lucchi, I. Nardini, M. Crisma, A. Mazzanti, S. A. Mason, M.-H. LemeeCailleau, F. A. Scaramuzzo, C. Zonta, Org. Biomol. Chem. 2012, 10, 2464; c) F. Fabris, C. Zonta, G. Borsato, O. De Lucchi, Acc. Chem. Res. 2011, 44, 416; d) S. Tartaggia, A. Scarso, P. Padovan, O. De Lucchi, F. Fabris, Org. Lett. 2009, 11, 3926; e) G. Mazzeo, E. Giorgio, C. Rosini, F. Fabris, E. Fregonese, U. Toniolo, O. De Lucchi, Chirality 2009, 21, E86; f) E. Dalkiliç, M. Güney, A. Daştan, N. Saraçoğlu, O. De Lucchi, F. Fabris, Tetrahedron Lett. 2009, 50, 1989; g) A. Scarso, L. Pellizzaro, O. De Lucchi, A. Linden, F. Fabris, Angew. Chem., Int. Ed. 2007, 46, 4972; h) F. Fabris, L. Pellizzaro, C. Zonta, O. De Lucchi, Eur. J. Org. Chem. 2007, 283; i) C. Zonta, F. Fabris, O. De Lucchi, Org. Lett. 2005, 7, 1003; j) G. Borsato, M. Crisma, O. De Lucchi, V. Lucchini, A. Zambon, Angew. Chem., Int. Ed. 2005, 44, 7435; k) G. Borsato, S. Brussolo, M. Crisma, O. De Lucchi, V. Lucchini, A. Zambon, Synlett 2005, 1125; 1) F. Fabris, L. Zambrini, E. Rosso, O. De Lucchi, Eur. J. Org. Chem. 2004, 3313; m) O. De Lucchi, A. Daştan, A. Altundaş, F. Fabris, M. Balci, Helv. Chim. Acta 2004, 87, 2364; n) F. Fabris, L. Bellotto, O. De Lucchi, Tetrahedron Lett. 2003, 44, 1211; o) G. Borsato, O. De Lucchi, F. Fabris, V. Lucchini, M. Pasqualotti, A. Zambon, Tetrahedron Lett. 2003, 44, 561; p) G. Borsato, O. De Lucchi, F. Fabris, L. Groppo, V. Lucchini, A. Zambon, J. Org. Chem. 2002, 67, 7894; q) L. Zambrini, F. Fabris, O. De Lucchi, G. Gardenal, F. Visentin, L. Canovese, Tetrahedron 2001, 57, 8719; r) F. Fabris, A. De Martin, O. De Lucchi, Tetrahedron Lett. 1999, 40, 9121.
[8] S. Tartaggia, P. Padovan, G. Borsato, O. De Lucchi, F. Fabris, Tetrahedron Lett. 2011, 52, 4478.
[9] H. Sakurai, T. Daiko, T. Hirao, Science 2003, 301, 1878.
[10] S. Higashibayashi, H. Sakurai, J. Am. Chem. Soc. 2008, 130, 8592; S. Higashibayashi, A. F. G. M. Reza, H. Sakurai, J. Org. Chem. 2010, 75, 4626; S. Higashibayashi, R. B. N. Baig, Y. Morita, H. Sakurai, Chem. Lett. 2012, 41, $84-86$; S. Higashibayashi, H. Sakurai, A. F. G. M. Reza, Chem. Asian J. 2009, 4, 1329.
[11] a) M. E. Şengül, D. D. Gültekin, S. Eşsiz, E. Şahin, A. Daştan, Tetrahedron 2009, 65, 4859; b) A. Daştan, J. Chem. Res., Synop. 2006, 104; c) A. Daştan, E. Uzundumlu, M. Balci, F. Fabris, O. De Lucchi, Eur. J. Org. Chem. 2004, 183; d) A. Daştan, F. Fabris, O. De Lucchi, M. Guney, M. Balci, Helv. Chim. Acta 2003, 86, 3411; e) A. Daştan, E. Uzundumlu, M. Balci, Helv. Chim. Acta 2002, 85, 2729 ; f) R. Altundaş, A. Daştan, N. S. Ünaldi, K. Güven, O. Uzun, M. Balci, Eur. J. Org. Chem. 2002, 526; g) A. Altundaş, A. Daştan, M. M. McKee, M. Balci, Tetrahedron 2000, 56, 6115; h) Eşsiz, M. E. Şengül, E. Şahin, A. Daştan, Turk. J. Chem. 2011, 35, 587.
[12] G. Borsato, A. Linden, O. De Lucchi, V. Lucchini, D. Wolstenholme, A. Zambon, J. Org. Chem. 2007, 72, 4272.
[13] S. Cossu, P. Peluso, Tetrahedron Lett. 2006, 47, 4015; R. Ballini, G. Bosica, S. Cossu, O. De Lucchi, P. Peluso, Tetrahedron 2001, 57, 4461; S. Cossu, O. De Lucchi, P. Peluso, R. Volpicelli, Tetrahedron Lett. 2000, 41, 7263; F. Chéry, P. Rollin, O. De Lucchi, S. Cossu, Tetrahedron Lett. 2000, 41, 2357; S. Cossu, O. De Lucchi, P. Peluso, R. Volpicelli, Tetrahedron Lett. 1999, 40, 8705; S. Cossu, O. De Lucchi, P. Pasetto, Angew. Chem., Int. Ed. 1997, 36, 1504.
[14] P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2007, $41,40$.
[15] B. M. Trost, Acc. Chem. Res. 2002, 35, 695.
[16] K. Hermann, S. Sardini, Y. Ruan, R. J. Yoder, M. Chakraborty, S. Vyas, C. M. Hadad, J. D. Badjić, J. Org. Chem. 2013, 78, 2984.
[17] C. Kazaz, A. Daştan, M. Balcı, Magn. Reson. Chem. 2005, 43, 75; M. D. Gheorghiu, E. Olteanu, J. Org. Chem. 1987, 52, 5158.
[18] H. L. Goering, J. V. Clevenger, K. Humski, J. Org. Chem. 1972, 37, 3019.
[19] E. Plettner, A. Mohle, M. T. Mwangi, J. Griscti, B. O. Patrick, R. Nair, R. J. Batchelor, F. Einstein, Tetrahedron: Asymmetry 2005, 16, 2754.

